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Challenges for Drone Detection

• TINY objects
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Challenges for Drone Detection
• Distraction: A or B?

Distractions
(boat1-000000)

Distractions
(boat2-000000)

Both are boats but 
different classes

Distractions
(whale1-000000)

Distractions
(whale1-000009)

One target object with 
something similar

Distractions
(building2-000001)

Distractions
(building2-000008)

One target object with 
many similar objects

Distractions
(riding2-000000)

Distractions
(riding3-000024)

Two objects in one 
image
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What Makes It Harder?

• Platform: Nvidia Jetson TX2

• Problem size: 95 classes
▫ Detection just based on the image itself

• Speed constraint: >20fps for real time effect
▫ The faster, the higher score

• Energy constraint
▫ Implicit, but the smaller, the better
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What Makes Life a Little Easier

• ONE target object/class to be detected per picture

• No classification, only detection
▫ Do not need to worry about A or B question for boat classes

• Color images with fixed sizes: 640x360 pixels 
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Design Metrics

• Accuracy
▫ IoU

• Speed
▫ >20fps

• Energy
▫ The smaller, the better

6



Framework Overview

Inference Training 
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Candidate Frameworks
• SSD (Single Shot MultiBox Detector)
▫ ZFNet/VGGNet as backbone 
▫ Good accuracy even with small image size
▫ Difficult to reach 20 fps

• Faster RCNN
▫ VGGNet/ResNet as backbone
▫ Highest accuracy but slowest

• YOLO 
▫ Darknet-19 as backbone
▫ Simple structure with fast execution
▫ Maintain a proper accuracy ranges

• Tiny YOLO
▫ A smaller model (darknet reference network) as backbone
▫ Fastest and easier to customize
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YOLO: You Only Look Once

• Predict bounding boxes and class 
probabilities directly from full images 

• Divide the input image into MxN cells
• Predict 6 bounding boxes in each cell 

using the feature maps
• Each bounding box is represented by
o x, y (central coordinates relative to the cell)
o Δw, Δh (shape offset relative to anchor shape)

Source for YOLO: J. Redmon and A. Farhadi, YOLO9000: Better, Faster, Stronger, CVPR 2017.

(0.87, dog)

(x, y)

w+Δw

h+Δh

anchor

w

h
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Contest Journey

Local Accuracy Speed (mode2) Power (mode2) Energy Efficiency
0.894 25 10.260 2.44

Local Accuracy Speed (mode2) Power (mode2) Energy Efficiency
0.879 22 10.088 2.18

• Last year

• This year
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#1: Choice of Image Scales
• Input image size: 640x360
• Trade-off between Image Scale & Running Speed
o We used 704x448 in our final submission
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#2: Better Network Structure
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Source for ResNet18: K. He, J. Sun et. al, Deep Residual Learning for Image Recognition, CVPR 2016.
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Feature Pyramid Network
• To improve location accuracy, combine 

the shallow features (semantically weak 
but w/ high resolution) with the deep 
features (w/ low resolution but 
semantically strong)

• Use nearest neighbor up-sampling to 
align two feature maps with different 
resolutions
▫ Concatenating them by channels instead 

of element-wise addition
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Source for FPN: T.-Y. Lin et. al, Feature Pyramid Networks for Object Detection, CVPR 2017.
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#3: Focal Loss
• Focal loss is a powerful loss function to 

address class imbalance

• Modify the original Loss function
ℒ = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

to
ℒ = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

▫ Resolve the imbalance between the single 
ground truth box and the candidate boxes

Source: T. Lin, et. al., Focal Loss for Dense Object Detection, ICCV 2017.
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#4: Tuning for Speedup
• Serial load and process, one image per

batch
o FPS: 14.9 (TX2 mode 2)
o Energy Efficiency: 2.232

• Make full use of GPU, several images per 
batch
oFPS: 16.7
oEnergy Efficiency: 2.331

• Use multithreading to load images and 
inference in parallel
oFPS: 28.5
oEnergy Efficiency: 2.774

processing time

time for loading image(s)

time for inference
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Conclusions

• Addressed multiple challenges for drone object detection 

• The ResNet18 backbone improves both the accuracy and running 
speed compared with DarkNet7 (backbone we used last year)

• The use of FPN and focal loss helps tiny object detection and 
distraction problems
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