Team: DeepZS

Towards Real Time Drone Detection on Embedded Platforms

2019 DAC System Design Contest

Jianing Deng, Tianhao Shen, Xingang Yan, Yufei Chen, Cheng Zhuo Huifan Zhang, Ruoyu Wang*, Pingqiang Zhou

Challenges for Drone Detection

TINY objects

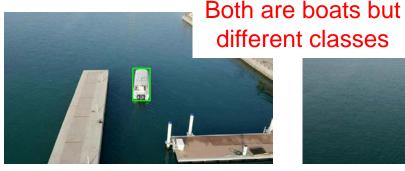
Small object (truck2-000001)

Small object (truck2-000006)

Small object (truck2-000032)

Challenges for Drone Detection

• Distraction: A or B?



Distractions

Distractions (boat1-000000)

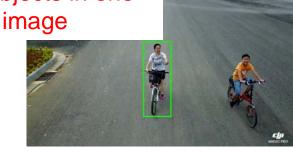
000) (boat2-000000) One target object with many similar objects

Distractions (building2-000001)

Distractions (building2-00008)

Distractions (whale1-000009)

Distractions (riding2-00000)



Distractions (riding3-000024)

What Makes It Harder?

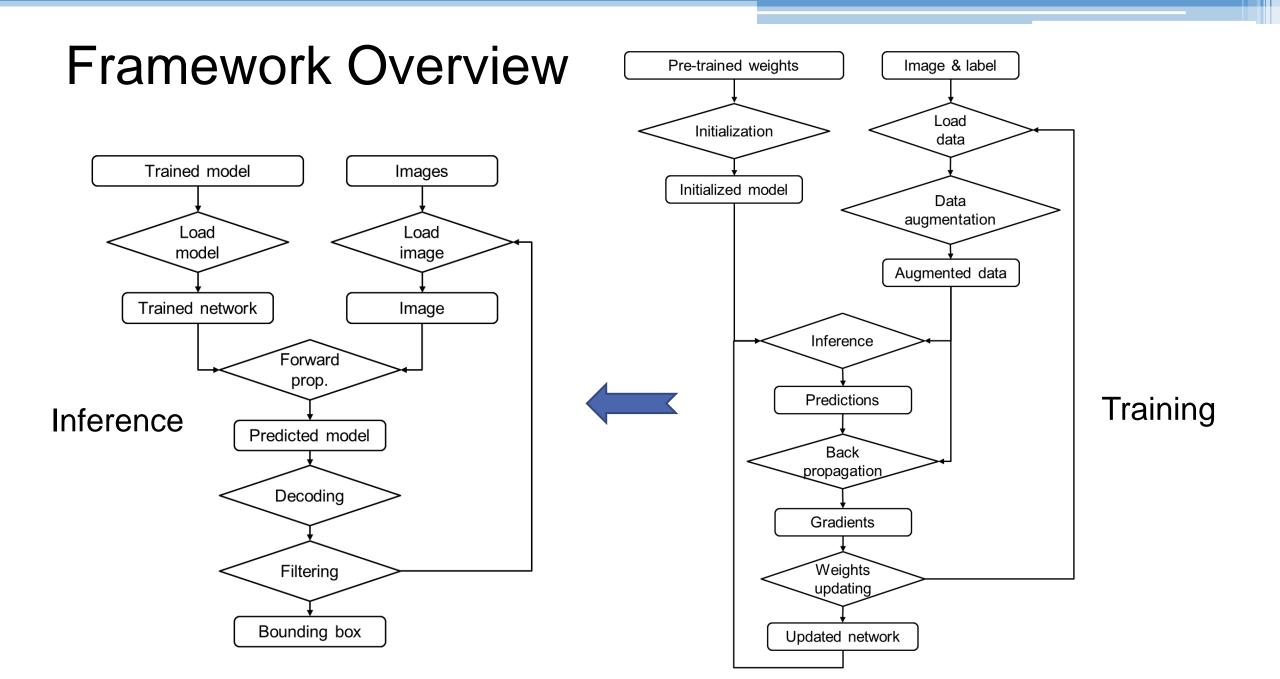
- Platform: Nvidia Jetson TX2
- Problem size: 95 classes
 - Detection just based on the image itself
- Speed constraint: >20fps for real time effect
 The faster, the higher score
- Energy constraint
 - Implicit, but the smaller, the better

What Makes Life a Little Easier

- ONE target object/class to be detected per picture
- No classification, only detection
 - Do not need to worry about A or B question for boat classes
- Color images with fixed sizes: 640x360 pixels

Design Metrics

- Accuracy
 IoU
- Speed
 >20fps
- Energy
 - The smaller, the better



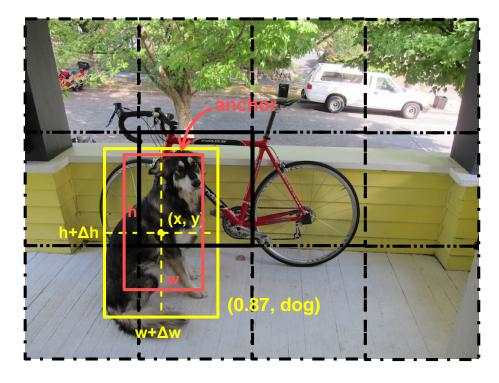
Candidate Frameworks

- SSD (Single Shot MultiBox Detector)
 - ZFNet/VGGNet as backbone
 - Good accuracy even with small image size
 - Difficult to reach 20 fps
- Faster RCNN
 - VGGNet/ResNet as backbone
 - Highest accuracy but slowest
- YOLŎ
 - Darknet-19 as backbone
 - Simple structure with fast execution
 - Maintain a proper accuracy ranges

• Tiny YOLO

- A smaller model (darknet reference network) as backbone.
- Fastest and easier to customize

YOLO: You Only Look Once



- Predict bounding boxes and class probabilities directly from full images
- Divide the input image into MxN cells
- Predict 6 bounding boxes in each cell using the feature maps
- Each bounding box is represented by

 x, y (central coordinates relative to the cell)
 Δw, Δh (shape offset relative to anchor shape)

Source for YOLO: J. Redmon and A. Farhadi, YOLO9000: Better, Faster, Stronger, CVPR 2017.

Contest Journey

Last year

Local Accuracy	Speed (mode2)	Power (mode2)	Energy Efficiency
0.879	22	10.088	2.18

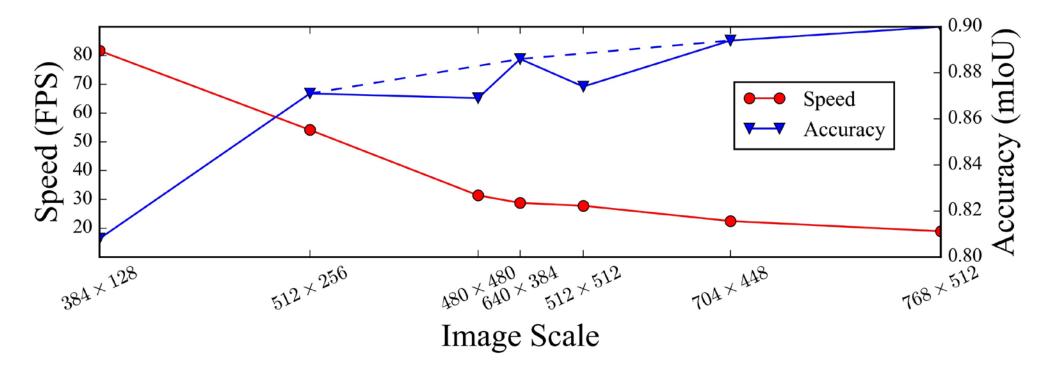
• This year

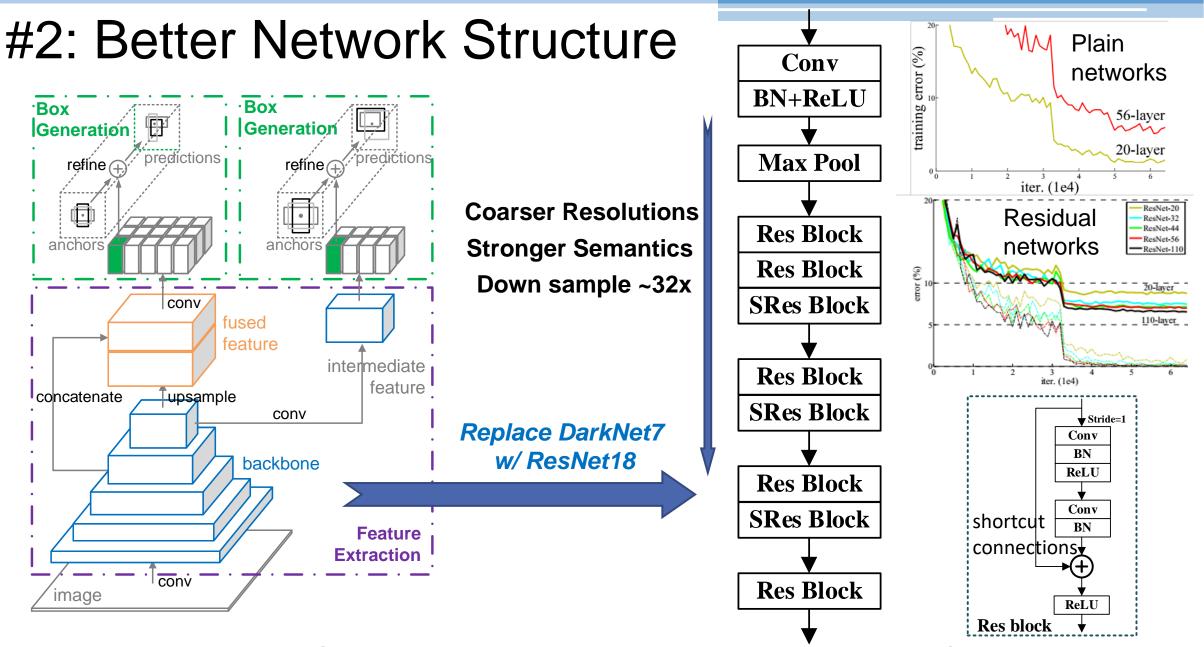
Local Accuracy	Speed (mode2)	Power (mode2)	Energy Efficiency
0.894	25	10.260	2.44

#1: Choice of Image Scales

- Input image size: 640x360
- Trade-off between Image Scale & Running Speed

• We used 704x448 in our final submission

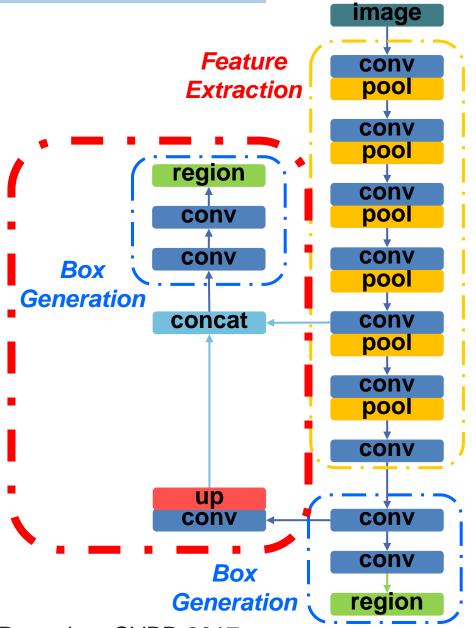




Source for ResNet18: K. He, J. Sun et. al, Deep Residual Learning for Image Recognition, CVPR 2016.

Feature Pyramid Network

- To improve location accuracy, combine the shallow features (semantically weak but w/ high resolution) with the deep features (w/ low resolution but semantically strong)
- Use nearest neighbor up-sampling to align two feature maps with different resolutions
 - Concatenating them by channels instead of element-wise addition



Source for FPN: T.-Y. Lin et. al, Feature Pyramid Networks for Object Detection, CVPR 2017.

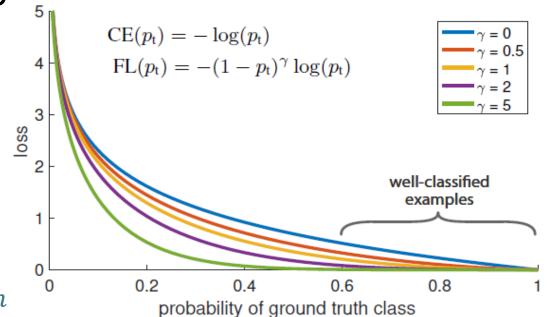
#3: Focal Loss

- Focal loss is a powerful loss function to address class imbalance
- Modify the original Loss function $\mathcal{L} = L2Loss_{confidence} + L2Loss_{location}$

to

 $\mathcal{L} = FocalLoss_{confidence} + L2Loss_{location}$

 Resolve the imbalance between the single ground truth box and the candidate boxes



#4: Tuning for Speedup

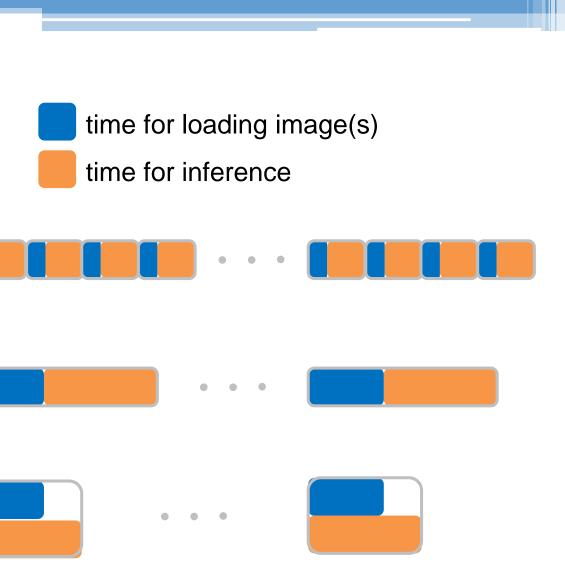
 Serial load and process, one image per batch

FPS: 14.9 (TX2 mode 2)Energy Efficiency: 2.232

- Make full use of GPU, several images per batch

 FPS: 16.7
 Energy Efficiency: 2.331
- Use multithreading to load images and inference in parallel

 FPS: 28.5
 Energy Efficiency: 2.774



processing time

Conclusions

- Addressed multiple challenges for drone object detection
- The ResNet18 backbone improves both the accuracy and running speed compared with DarkNet7 (backbone we used last year)
- The use of FPN and focal loss helps tiny object detection and distraction problems