Parallel Computing: Project Report - Real-Time
Hashing on GPU Architecture with CUDA

Ruoyu Wang
Computer Science and Technology
ShanghaiTech University
wangry @shanghaitech.edu.cn
30401619

Abstract—Hashing is a frequently used technology in the
field of computer graphics. Applications like interactive frame
intersection detection and photo pattern matching require real-
time hashing on millions of voxels. Efficient hash tables are
usually considered not suitable for GPU architecture. Dan A.
Alcantara, et al., proposed a multi-level shared-memory solution
that achieves real-time graphic hashing on GPUs [1]. In this
report, we summarize their solution and introduce our simpli-
fied implementation for numerical hashing. Multi-level shared-
memory hashing achieves 10x speedup compared to traditional
global-memory GPU hashing at insertions, meanwhile lookups
are not affected.

I. INTRODUCTION

Computer graphics applications frequently use hashing tech-
niques. In frame intersection detection (Figure 1, top), voxels
in the based frame are inserted into a hash table. We then query
the table for voxels in subsequent frames, to check whether
these two frames intersect at those positions. In photo pattern
matching (Figure 1, bottom), similar procedures are conducted.
With real-time embedded systems become popular, these ap-
plications are made interactive, which requires hashing to be
real-time as well. Dan A. Alcantara, et al., proposed a multi-
level shared memory hashing scheme on GPU architecture that
can hash millions of voxels in milliseconds time [1].

Fig. 1. Examples From the SIGGRAPH’09 Paper [1]: Frame Intersection
Detection (top), Photo Pattern Matching (bottom)

Guanzhou Hu
Computer Science and Technology
ShanghaiTech University
hugzh1 @shanghaitech.edu.cn
36136477

Dan’s solution contains redundant stages in order to serve
graphics applications. We modified their algorithm and imple-
mented a simplified version for purely numerical hashing. The
following sections will cover:

e Summary of the aforementioned paper “Real-Time Par-
allel Hashing on the GPU” (see Section II).

o Our simplified implementation [2] (see Section III).

o Experiments and results (see Section IV).

Then Section V will conclude.

II. PAPER READING

We will summarize the main ideas of SIGGRAPH’09 paper
“Real-Time Parallel Hashing on the GPU” [1] in this section.

A. Motivation

Their solution is motivated by two important hashing tech-
niques: FKS perfect hashing and cuckoo hashing.

Traditional perfect hashing states that mapping n input keys
onto a table of size n? is likely to introduce no collisions.
FKS perfect hashing is a space-optimized version of perfect
hashing by using 2 levels. On the first level, keys are hashed
into buckets with a hash function chosen to be uniform enough.
On the second level, keys in each bucket are then hashed using
traditional perfect hashing locally (therefore a bucket with n’
keys inside will be of size n'?).

—m—
g

Collision free, but
very sparse table
of size n®

AN

EEEEEEmsE] N &

O o O i

Fig. 2. From the SIGGRAPH’09 Poster [3]: FKS Perfect Hashing

Choosing collision-free perfect hash functions is not prac-
tical in real-world applications. Cuckoo hashing is a modified
version of perfect hashing that makes it practical. It allows
a key k; to be hashed into multiple slots with multiple hash
functions, and when all slots are occupied, evicts the key in its
first slot ko to the next slot on ky’s chain. Lookup operations



are ensured constant-time, while insertion operations depend
on the choice of hash functions and the input scale.

Keys to insert
a b

RH K
H H

Sub-table 1 Sub-table 2

q

H Ll
’ \i!JJ

BN
~H

Fig. 3. From the SIGGRAPH’09 Poster [3]: Cuckoo Hashing
Cuckoo hashing can be parallelized under GPU computation
model, where each thread tries to insert a unique key, and
each warp stage executes a round of eviction. However, in one
stage, all threads communicate with the global device memory
in relatively random (thus non-coalesced) manner. Memory
accesses become a serious bottleneck of GPU cuckoo hashing.
Multi-level hashing can potentially help with this situation.

B. Algorithm Design
Their solution contains two major phases:

1) Tier-1: Distribute n keys into b buckets, trying to be as
uniform as possible.
2) Tier-2: Inside each bucket, do local cuckoo hashing
using shared device memory.
The overall insertion algorithm is summarized in Algorithm
1. It launches 4 kernels for every insertion operation. For
simplicity, we omit satellite values and only consider the keys.

Algorithm 1 Insert(T', K)
input: 7', Hash table; K, Input keys
output: Inserts all keys in K into table T’
for every key k in parallel do
¢ = bucket[k] = hi(k);
3: atomicAdd (count[c]);
offset [k] = old value of count;
end for
6: parallel prefix sum on count [] to get start[];
for every key k in parallel do
bucket [k];
+ offset[k]] = k;

c =
9: buf [start [c]
end for
for every bucket c in parallel do
12: retrieve its keys from buf [];
cuckoo_hash (start [c],
write back to global memory;
15: end for

count [c]) ;

In graphics applications, input values are usually uniform,
therefore level-1 hash function h; can be chosen as a simple
modulo function. Experiments show that the following hash
function gives a more balanced distribution across buckets:

hi(k) = ((co + c1k) mod 1900813) mod |buckets],

where ¢y and c; are randomly chosen integers, and 1900813
is a prime number which gives the best distribution in their
experiments.

Their work also includes optimization techniques for mul-
tiple satellite values (for example RGB values for a voxel).
This is not the most important part of our concern, therefore
we will not discuss them in this report.

C. Results

On Amazon AWS GPU servers, they applied multi-level
shared-memory GPU hashing for the 3D Lucy model voxels.
Performance results are shown in Figure 4 below. “GPU Hash:
Construction” means insertion and “GPU Hash: Retrieval”
means lookup. “Radix sort” and “Binary search” correspond
to the time performance of not using hash tables to lookup all
values after they have been sorted.

180

—@— GPU Hash: Construction -
160 |- A~ GPU Hash: Retrieval a7
140 ¢ Sorted array: Radix sort L7
- @ Sorted array: Binary search A
g 120 [-X- CPU PSH: Retrieval a7
] e
g 100 "
g e
2 80 ..
2

60 a
“‘ Mﬁ/g/ﬂ/“”/g
a0 -t -

20 B T 0000 A A A 4 a
A
x %K XK
0 2 4 6 8 10

Key-value pairs (millions)

30

- Cuckoo hashing

25 | @ Assigning keys to buckets and counting
¢ Shuffling the points into the buckets
20 -|-©-Initialization

.E A Determining bucket data locations
g 15 o
= &
2 0

5

<
0 & x by
0 2 4 6 8 10
Key-value pairs (Millions)
Fig. 4. Results From the SIGGRAPH’09 Paper [1]: Overall Time Perfor-

mance Comparison (top), Insertion Time Breakdown (bottom)

III. OUR IMPLEMENTATION

We found that for purely numerical and uniform input keys,
their solution can be simplified into 2 kernels per insertion,
by sacrificing slightly more global memory space. When
partitioning a table of size m into b buckets and inserting
n keys into the table, we assume that every bucket will not
receive more than % keys. Thus, instead of using a buffer
array of size n to store distribution results, we use a table
buffer array of size m, and write every key k directly into its
bucket during distribution phase. Then, we assign a CUDA
thread block for each bucket. It retrieves keys in the bucket
from the table buffer, and conducts local cuckoo hashing.

The overall insertion procedure of our simplified algorithm
is summarized in Algorithm 2. Bucket size is normally chosen



as 256 / 512, since they are the most reasonable sizes for a
CUDA thread block [2].

Algorithm 2 Insert(T', K)
input: 7', Hash table; K, Input keys
output: Inserts all keys in K into table T’
choose bucket size = % = 512;
for every key k in parallel do
3: ¢ = bucket [k] = hyi(k);
atomicAdd (count [c]) ;
offset [k] = old value of count;
6: tab_buf[5l12-¢ + offset[k]] = k;
end for
for every bucket c in parallel do
9: retrieve its keys from tab_buf[];
cuckoo_hash (512-¢, count[c]);
write back to global memory;
12: end for

Notice that in the second kernel, data retrieval from global
memory and write back towards global memory are all mem-
ory coalesced.

IV. PERFORMANCE EVALUATION

We conducted experiments on insertion and lookup time
performance of multi-level shared-memory GPU hashing im-
plementation on SIST-AI cluster, node 14. Its hardware con-
figuration is listed in Table I. Our experiments only include
numerical keys without satellite values, therefore they can
clearly demonstrate the speedup brought by utilizing shared
memory.

GPU Nvidia Tesla K80, 12 GB memory
CPU Intel Xeon E5-2690 v4 @ 2.60GHz, 28 threads
Main Memory 128 GB, DDR4
TABLE I

EXPERIMENT HARDWARE CONFIGURATION

A. Insertion Performance

We insert 2° uniformly random integer keys into a table
of size 2°T1. Compared to traditional global-memory cuckoo
hashing, multi-level shared-memory implementation achieves
nearly 10x speedup, as shown in Figure 5.

| = Naive
¥ Multi-level
k2

Insertion Time Performance Comparison

14,000

: .II|

18 19 20 2 2 2 u ES %
Scale (27s keys into 2A{s+1} sized table)

Insertion Time (ms)
2 g & £ E
g &8 8 & B8

N
°
8

Fig. 5.

B. Lookup Performance

We lookup 2° unique integer keys from a table of size 251!
(initially containing 2° keys inside), where half of the keys to
lookup are picked from existing keys, and another half purely
random. Results are shown in Figure 6. We can see that though
we added an extra level of hashing into buckets, its effect
towards lookup performance is too small to be observed.

1,800

1,600

,.
ry
g8

_...
B
8

,..
1)
8

W Naive

8
s

H Multi-level

Lookup Time (ms)
28
s

8
s

B8
s

Vertical (Value) Axis Major Gridlines
—— e WH

18 19 20 2n 2 3 2 5 2% 27

Scale (27s keys in 27{s+1} sized table)

°

Fig. 6. Lookup Time Performance Comparison

V. CONCLUSION & FURTHER OPTIMIZATIONS

In summary, combining multi-level hashing with shared-
memory cuckoo hashing significantly accelerates GPU hashing
performance. Dan A. Alcantara, et al., brought this idea into
scope in their work “Real-Time Parallel Hashing on the GPU”
[1]. They achieved graphical hashing on millions of voxels in
milliseconds time. We simplified their algorithm to adapt for
purely numerical hashing. Our implementation achieves nearly
10x speedup for insertion operations, meanwhile not affecting
lookup performance. With multi-level shared-memory GPU
hashing, it is possible to process hundreds of millions of input
queries within real-time constraint.

Interestingly, we failed to find any further work related to
parallel real-time GPU hashing within the recent 10 years.
We suppose that multi-level shared-memory hashing algorithm
has already pushed the performance of GPU hashing to an
extreme. Further improvements might be brought by a better
choice of hash function set, based on the actual application
scenery.

REFERENCES

[1] D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzenmacher,
J. D. Owens, and N. Amenta, “Real-time parallel hashing on the gpu,”
in ACM SIGGRAPH Asia 2009 Papers, ser. SIGGRAPH Asia ’09. New
York, NY, USA: ACM, 2009, pp. 154:1-154:9. [Online]. Available:
http://doi.acm.org/10.1145/1661412.1618500

[2] Our implementation on github. [Online]. Available: https://github.com/
hgz12345ssdlh/cuckoo-hashing-CUDA

[3] Real-time parallel hashing on the gpu. [Online]. Available: https://www.
cs.bgu.ac.il/~asharf/Projects/Real TimeParallelHashingonthe GPU.pdf


http://doi.acm.org/10.1145/1661412.1618500
https://github.com/hgz12345ssdlh/cuckoo-hashing-CUDA
https://github.com/hgz12345ssdlh/cuckoo-hashing-CUDA
https://www.cs.bgu.ac.il/~asharf/Projects/RealTimeParallelHashingontheGPU.pdf
https://www.cs.bgu.ac.il/~asharf/Projects/RealTimeParallelHashingontheGPU.pdf

	Introduction
	Paper Reading
	Motivation
	Algorithm Design
	Results

	Our Implementation
	Performance Evaluation
	Insertion Performance
	Lookup Performance

	Conclusion & Further Optimizations
	References

